Probing charge transfer excitons in a MoSe₂–WS₂ van der Waals heterostructure

Frank Ceballos, Matthew Z. Bellus, Hsin-Ying Chiu and Hui Zhao*

We show that the van der Waals heterostructure formed by MoSe₂ and WS₂ provides a unique system with near degenerate interlayer and intralayer excitonic states. Photoluminescence measurements indicate that the charge transfer exciton states are approximately 50 meV below the MoSe₂ exciton states, with a significant spectral overlap. The transient absorption of a femtosecond pulse was used to study the dynamics of the charge transfer excitons at room temperature. We found a lifetime of approximately 80 ps for the charge transfer excitons. A diffusion coefficient of about 14 cm² s⁻¹ was deduced, which is comparable to individual excitons in transition metal dichalcogenides.

1. Introduction

Layered materials represent a diverse and largely unexplored source of two-dimensional materials with exotic properties that can be very different from their bulk counterparts. ¹ Among them, transition metal dichalcogenides (TMDs) have drawn considerable attention since 2010. ² They have several exotic properties such as an indirect to direct band gap transition in monolayers,³,⁴ valley-selective optical coupling,⁵–⁷ and large binding energies of excitons, trions, and bi-excitons.⁸–¹⁰ In addition to their potential applications as individual materials in field-effect transistors,¹¹ solar cells,¹²,¹³ light-emitting diodes,¹⁴ and sensors,¹⁵ these atomic layers are being used as the building blocks for new van der Waals heterostructures.¹⁶ These heterostructures can potentially combine the novel properties of TMDs for targeted applications.

Six different types of bilayer heterostructures can be formed by utilizing MoS₂, MoSe₂, WS₂, and WSe₂, the four most extensively studied TMDs. The following five combinations have been fabricated and studied: MoS₂–MoSe₂,¹⁷ MoS₂–WS₂,¹⁸–²² MoS₂–WSe₂,²³–²⁹ MoSe₂–WSe₂,³⁰ and WS₂–WSe₂.³¹ These heterostructures have qualitatively similar properties and as predicted by first-principles calculations³²,³³ their band alignment is of type-II, where the bottom of the conduction and the top of the valence bands reside in different layers. Hence, electrons and holes, once excited in either layer, are inclined to spatially separate to the two layers and form charge transfer excitons, as observed from photoluminescence (PL) quenching¹⁹,²¹,²³,²⁴ and time resolved measurements.¹⁷,¹⁸ Due to the large offsets (in energy) between the conduction band minimum in one layer and the valence band maximum in the other layer, the energy states of the charge transfer excitons are far away from the direct exciton states. The increase in spatial separation of the electron and hole wave functions results in long lived charge transfer excitons.³⁰

Here we show that the less studied heterostructure, MoSe₂–WS₂, is in fact the only one that has near degenerate direct exciton and charge transfer exciton states. PL measurements showed that the charge transfer exciton states are only 50 meV below the MoSe₂ excitons, with significant overlap of the two PL peaks. Temporally and spatially resolved measurements revealed that the transport properties of the charge transfer excitons are similar to that of direct excitons in TMD monolayers. The near degenerate exciton states indicate the small conduction band offset in MoSe₂–WS₂ heterostructure, which facilitates gate control of charge transfer.

2. Experimental section

To fabricate the heterostructure sample, we first obtained monolayer flakes of MoSe₂ and WS₂ on polydimethylsiloxane (PDMS) substrates, following the standard procedures of mechanical exfoliation. The MoSe₂ flake was then transfer to a Si substrate with a 90 nm SiO₂ layer. The sample was then cleaned in acetone, rinsed with isopropanol, dried under nitrogen, and annealed for 2 h at 200 °C in a H₂/Ar (10 sccm/100 sccm) environment with a pressure of 3 Torr. Next, the WS₂ flake is transfer onto the MoSe₂ flake, followed by the same cleaning and annealing procedure.

The PL system is based on a Horiba iHR550 imaging spectrometer equipped with a thermoelectrically cooled
charge-coupled device (CCD) camera. A diode laser beam of 405 nm is focused to the sample through a microscope objective lens. An imaging system was used to observe and locate the laser spot on the flake. The PL was collected by the same objective lens and then guided to the spectrometer.

The differential reflection setup utilizes a laser system composed of a Ti:sapphire laser with a repetition rate of 81 MHz and an optical parametric oscillator. The pulses of 790 and 810 nm were obtained from the Ti:sapphire laser directly, while second-harmonic generation of this output in a beta barium borate crystal was used to obtain the pulses of 385 and 395 nm. The 730 nm pulse was obtained by second harmonic generation of the output of the optical parametric oscillator. To obtain the 620 nm pulse, supercontinuum generation from the Ti:sapphire output in a photonic crystal fiber was utilized, with a bandpass filter to select the desired spectral component. All the pulses are shorter than 300 fs. In each pump/probe configuration, the two pulses were focused to the sample from normal direction by a microscope objective lens. The reflected probe pulse was sent to a silicon photodetector, with the output measured by a lock-in amplifier. The pump pulse was modulated by a mechanical chopper at about 2 kHz.

3. Results and discussion

3.1 Excitonic states in MoSe2–WS2 heterostructure

The WS2–MoSe2 heterostructure sample studied is shown schematically in Fig. 1a (and visually Fig. 1b). The monolayers composing the heterostructure have neighboring secluded regions of WS2 and MoSe2 which ease the comparison between any measurement done in the heterostructure and its constituent monolayers. No efforts were made to determine and control the relative orientations of the two flakes; as a matter of fact, the WS2 location was selected so that the heterostructure region contained a large area. In all the measurements reported in this paper, the sample was kept under an ambient condition. No sample degradation was observed during the course of the entire study.

Recently, two groups have predicted, using first-principle calculations,32,33 that the conduction band offset of MoSe2 and WS2 could be as small as 20 or 60 meV. Fig. 1c shows schematically the type-II band alignment of this heterostructure, where the near degenerate conduction bands facilitate control of electron population between the two layers which can be utilized in tunneling-based devices.

We begin our study by conducting PL spectroscopy on the heterostructure and its neighboring monolayers. To generate the PL a continuous wave laser with a 405 nm wavelength and incident power of 0.6 μW was focused onto a perpendicularly placed sample using a ×50 microscope objective lens. The PL spectra of the WS2 (blue), MoSe2 (red), and WS2–MoSe2 heterostructure (black), shown in Fig. 2, were collected by an imaging spectrometer equipped with a thermoelectrically cooled CCD camera. An intense PL emission centered at 617.3 nm was observed when the laser spot was located on the WS2 monolayer region (blue curve in Fig. 2, divided by 23). The peak position, linewidth, and PL yield are all reasonably consistent with previous reports,34–38 further confirming its monolayer thickness. When the laser spot was placed on the MoSe2 region, a much weaker PL peak was observed at 785.5 nm (red curve in Fig. 2), which is also consistent with previous results.39–41
Of more interest is the heterostructure PL spectrum which exhibits two peaks at 614.7 nm and 810.0 nm. Without interlayer coupling or charge transfer, the PL spectrum of the heterostructure is expected to be the sum of the two individual monolayer spectrums. However, the 614.7 nm peak, due to the radiative recombination of excitons in the WS2 layer of the heterostructure, is close to the WS2 monolayer peak, but is slightly blue shifted due to the different dielectric environment present in the heterostructure. Moreover, its magnitude has been quenched by a factor of 23, suggesting that most of the holes created in WS2 transferred to MoSe2 before forming direct excitons and recombining radiatively. A similar PL quenching effect has been recently observed on WS2–MoS2 heterostructures with clean interfaces.18–22 In addition, its shape displays a shoulder, absent in the WS2 PL spectrum, that occurs at longer wavelengths from the 614.7 nm peak and is attributed to the formation of trions.42

The strong peak at 810.0 nm, observed in the heterostructure, appears near the spectral range of the MoSe2 exciton. The following facts show that the excitons in MoSe2 are not the origin of this peak. First, the 810.0 nm peak in the heterostructure is 25.0 nm longer than the MoSe2 monolayer PL peak (785.5 nm). When forming heterostructures, the exciton binding energies are expected to slightly change due to the different dielectric environment; actually, previous measurements show that the shift of the MoSe2 PL peak is at most a few nanometers when forming heterostructures with MoS2. Considering the similar dielectric properties of these TMDs, it is unlikely that WS2 would cause a 25 nm shift of the MoSe2 exciton peak. In fact, in this sample, the shift of the WS2 peak is only 2.6 nm. Second, previous studies on TMD heterostructures have all observed PL quenching. Specifically, exciton PL of MoSe2 was found to be reduced by a factor of 15 when forming a heterostructure with MoS2 and by a factor of 5 with WSe2. However, the 810 nm peak magnitude in our MoSe2–WS2 heterostructure sample is twice as large than the magnitude of the MoSe2 monolayer, strongly suggesting that it is not from excitons in MoSe2. Furthermore, by fitting the 810 nm peak with two Gaussian functions (pink curves), we were able to identify a small component that is about 10 times lower than the MoSe2 exciton peak. This is likely the quenched MoSe2 peak in the heterostructure.

Having excluded the MoSe2 excitons as the origin, we attribute the 810 nm peak to the spatially indirect excitons, known as charge transfer excitons (XCT). Upon optical excitation of a 405.0 nm laser, electrons and holes are injected into both layers. This would normally produce direct excitons that would reside and decay in the particular layer they were produced; however, as a result of the HT type-II band alignment, where the minimum of the conduction band is located in the WS2 monolayer and the maximum of the valence band is in the MoSe2 monolayer, spatial separation of most electrons and holes after photoexcitation will ensue. Despite the fact that electrons populate the WS2 monolayer and holes the MoSe2 monolayer, their electrostatic Coulomb force binds them together to form charge transfer excitons. With this assignment, we can construct the exciton energy states diagram as shown in Fig. 1d. The energy difference of 50 meV between the charge transfer and MoSe2 excitons is order-of-magnitude consistent with the theoretical predictions on the conduction band offset.12,33

We note that the annealing process described in section 2 is necessary for forming a clean interface between the two monolayers, which is required for efficient charge transfer. Samples before the annealing process show no sign of charge transfer, with PL spectra similar to the sum of the spectra of individual monolayers.

3.2 Probing the charge transfer excitons

To further confirm the observation of the charge transfer excitons, we performed transient absorption measurements in reflection geometry. A 730 nm pump pulse with a peak fluence of 5.6 μJ cm−2 is used to inject excitons in the MoSe2 layer of the heterostructure sample. To monitor the charge transfer excitons, we measured the differential reflection of a 810 nm probe pulse (tuned to the charge transfer exciton PL peak). The differential reflection is defined as the relative change of the probe reflection caused by the presence of the pump. Symbolically, this is noted as \(\Delta R/R_0 = (R - R_0)/R_0 \), where \(R \) and \(R_0 \) are the probe reflection with and without the presence of the pump, respectively. We observed a strong differential reflection signal with a magnitude on the order of 10−3, as shown by the black curves in Fig. 3, that reaches a peak immediately following the pump excitation. The ultrafast rise of the signal is a clear indication that charge transfer excitons are formed in an ultrashort time scale.

Two control experiments were performed to ensure that the charge transfer excitons were probed. First, we repeated the
measurement on the MoSe$_2$ monolayer region of the flake, where no signal could be measured (shown as the blue curves on Fig. 3) since the 810 nm pulse is well below the exciton resonance of MoSe$_2$. Second, we used the 810 nm pulse as the pump and 730 nm pulse as the probe on the heterostructure sample. No signal was observed (shown as the purple curve on Fig. 3), which further confirms the nature of the 810 nm peak. As a spatially indirect transition, its absorption is expected to be weak and even if some charge transfer excitons are injected by the 810 nm pump, they cannot populate the MoSe$_2$ exciton states; therefore, they should not be detected by the 730 nm probe. These two measurements prove unambiguously that the black curves shown in Fig. 3 are indeed from the charge transfer excitons.

To compare the charge transfer excitons with excitons in the individual monolayers, we probed the excitons in MoSe$_2$ (395 nm pump and 790 nm probe, red curve) and WS$_2$ (385 nm pump and 620 nm probe, orange curve) regions. We found that under the same conditions, the differential reflection signals when probing the monolayers were larger than the signal of the charge transfer excitons. Although part of the difference could be attributed to changes of absorption coefficient at different pump wavelengths, the indirect nature of the charge transfer exciton absorption should result in a weaker transient absorption response.

3.3 Dynamics of charge transfer excitons

Having established the probe of charge transfer excitons, we used the 730 nm pump and 810 nm probe to study the dynamics of charge transfer excitons.

First, to study the recombination of charge transfer excitons, we performed time-resolved differential reflection measurements with different values of the pump fluence. Fig. 4a shows the decay of the signal, with the pump fluences indicated in the figure. We find that the magnitude of the signal is proportional to the pump fluence, as summarized in Fig. 4b, which shows that the transient absorption signal is proportional to the density of the charge transfer excitons. After a short transient of less than 1 ps, the rest of the decay can be well described by bi-exponential functions, as confirmed by the fits shown as the red curves in Fig. 4a. The two time constants obtained from these fits are summarized in the inset of Fig. 4b. We found that in this range, the decay constants are independent of the pump fluence, which shows the multie exciton recombination process plays an unimportant role in the dynamics of charge transfer excitons. This is in contrast to exciton dynamics in monolayer MoSe$_2$, where a density-dependent dynamic due to exciton–exciton annihilation was observed.\(^{40} \) We attribute the long time constant of approximately 80 ps to the lifetime of charge transfer excitons. Given the expected long radiative lifetime of these excitons, the lifetime deduced here is likely limited by nonradiative recombination. The short time constant of less than 20 ps can be attributed to energy relaxation since the carriers are injected with large excess energies.

Next, we performed spatially resolved differential reflection measurements to study the diffusion of charge transfer excitons. Here, the pump and probe pulses are both focused to about 2 μm in full width at half maximum. The distance between the centers of the pump and probe spots, defined as the probe position (with respect to the pump spot center), can be adjusted by slightly changing the incident angle of the beam to the objective lens. By measuring the differential reflection signal as a function of the probe delay at each probe position, we obtain the evolution of the signal as a function of both time and space, as plotted in Fig. 5a. At each probe delay, the spatial profile has a Gaussian shape. Fig. 5b shows a few examples of these profiles, along with the Gaussian fits (solid curves). The squared width deduced from all the fits are plotted in Fig. 5c, as a function of the probe delay.

In this process, the pump pulse injects excitons in MoSe$_2$, which form charge transfer excitons rapidly after the electrons moved to WS$_2$ that then diffuse in the heterostructure, driven
by the in-plane density gradient. This diffusion process can be described by the classic diffusion equation, which predicts that the squared width of the profile increases linearly as \(w^2(t) = w_0^2 + 4Dt \), where \(D \) and \(w_0 \) are the exciton diffusion coefficient and the initial width, respectively.\(^{43}\) We find that this model can well describe the expansion of the profile after about 20 ps. By a linear fit, as indicated by the red line in Fig. 5c, we obtain a diffusion coefficient of 14 \(\pm 3 \) cm\(^2\) s\(^{-1}\). This value is similar to exciton diffusion coefficients found in individual TMD monolayers,\(^{44,45}\) showing that the spatial indirect nature of the charge transfer excitons does not significantly change its in-plane transport property.

4. Conclusions

We present multiple evidences that the 810 nm PL peak originates from charge transfer excitons in the MoSe\(_2\)–WS\(_2\) heterostructures. Based on that, we constructed the energy diagram of exciton states of this structure, with near degenerate charge transfer and MoSe\(_2\) exciton states. Our PL measurement confirmed the theoretical predictions of the small conduction band offset of this structure. Finally, through transient absorption measurements with high temporal and spatial resolution, we obtained a lifetime of 80 ps and an in-plane diffusion coefficient of 14 cm\(^2\) s\(^{-1}\) for these charge transfer excitons.

Acknowledgements

This material is based upon work supported by the National Science Foundation of USA under Award no. DMR-0954486 and IIA-1430493.

References
